Depression

Brain stimulation offers hope for depression

By Kerrie-Anne Ho and Colleen Loo

Around 350 million people worldwide have depression. Antidepressant medications are often prescribed to treat the condition, alongside talking therapies and lifestyle changes such as regular exercise.

But a substantial proportion of people either don’t respond to antidepressants, or experience such significant side effects that they’d prefer not to take them.

In search of alternative solutions, researchers around the world, including our team, are investigating transcranial direct current stimulation (TDCS) as an alternative treatment for depression. But this isn’t something you can safely try at home.

Unlike electroconvulsive therapy, TDCS uses very mild electric current to stimulate the brain and has few side effects. The mechanics of TDCS are quite simple, involving a battery, two leads and the electrodes through which the current is passed.

Researchers are yet to fully understand the effects of varying stimulation approaches.
Tinydevil/Shutterstock

The stimulation works by changing the activity of nerve cells in the brain. In depression, the left frontal areas of the brain are often less active than usual. TDCS stimulates this area to restore brain activity.

We’re still evaluating the effectiveness of TDCS, but so far studies have found that TDCS works better than a placebo (or simulated treatment) at reducing symptoms of depression.

When combined with the antidepressant medication sertraline (marketed as Zoloft in Australia), the combination TDCS-drug therapy works better than medication or TDCS alone.

Research has found that among people with depression, a course of TDCS can improve the brain’s “neuroplasticity”, which is the brain’s ability to learn and adapt to changes in the environment.

The therapy has a good safety profile – if administered by clinicians and researchers trained in stimulation technique and safety. Our research team has administered thousands of TDCS sessions without incident.

But this is not the case when TDCS is used in the “DIY” context, with DIY users trying to stimulate their own brains.

This phenomenon is often guided by online forums and websites dedicated to DIY TDCS. Users comment on their own experience and share tips on how TDCS can be used to treat their own depression. People with no medical training and limited understanding of TDCS self-treat their depression and advise others on treatment.

Stronger is not necessarily better.
Ian Ruotsala/Flickr, CC BY-NC-SA

So, what can go wrong?

The most obvious concern is that poor technique and improper electrode placement could cause skin burns.

What’s more concerning is the ability for TDCS to produce lasting changes in brain functioning. Depending on how TDCS is given, these changes could be good or bad.

A DIY user could, for example, cause lasting impairment to their thinking and memory. For people with severe depression, incorrect application could worsen their condition or induce a hypomanic (manic) episode.

When it comes to medications, it’s important to get the right dose and dosing schedule. That’s why this role falls to qualified clinicians and researchers. The same goes for TDCS: current intensity, electrode size and position, and the duration and frequency of the stimulation determine the effects in the brain.

The relationship between dosing, intensity and position is highly complex. This isn’t a simple case of “the stronger the better”. Even researchers are yet to fully understand the effects of varying stimulation approaches and much more research is needed.

As with other forms of treatment, TDCS is not suitable for everyone. In clinical research trials, participants are screened for suitability to receive stimulation and their likelihood of responding to treatment. The stimulation is carefully controlled and the participants’ mood is carefully monitored during and after the course of treatment.

A substantial proportion of people don’t respond to antidepressants, or experience significant side effects.
Divine Harvester/Flickr, CC BY-NC-SA

TDCS represents a promising future, where simple and cost-effective treatment for depression is possible, without drugs. Researchers worldwide are continuing to study this experimental treatment, which may one day become a conventional treatment for depression.

The acceptance and popularity of TDCS among the general community is encouraging. But TDCS is still experimental and isn’t safe to administer at home. DIY users are not trained in proper technique nor are they trained to identify, prevent or deal with unexpected outcomes.

If you’re interested in participating in our TDCS trials for depression, contact the research team at the Black Dog Institute for more information.

The Conversation

This article was originally published on The Conversation.
Read the original article.

Could depression be caused by a virus?

depressed woman

© iStockphoto

Dr. Turhan Canli, associate professor of integrative neuroscience at Stony Brook University, makes a case for reconceptualizing depression as an infectious disease caused by foreign invaders like parasites, bacteria or viruses that make their way into the body and cause changes in the brain.

The Huffington Post spoke to Canli about his theory and what it might mean for future treatment.

Link here to read Why This Psychologist Thinks Depression Is An Infectious Disease

Eating yogurt

iStockphoto

“Many of us have a container of yogurt in our refrigerator that we may eat for enjoyment, for calcium or because we think it might help our health in other ways,” said Dr. Kirsten Tillisch, an associate professor of medicine at UCLA’s David Geffen School of Medicine and lead author of the study. “Our findings indicate that some of the contents of yogurt may actually change the way our brain responds to the environment. When we consider the implications of this work, the old sayings ‘you are what you eat’ and ‘gut feelings’ take on new meaning.”

UCLA researchers now have the first evidence that bacteria ingested in food can affect brain function in humans. In an early proof-of-concept study of healthy women, they found that women who regularly consumed beneficial bacteria known as probiotics through yogurt showed altered brain function, both while in a resting state and in response to an emotion-recognition task.

The study, conducted by scientists with UCLA’s Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and the Ahmanson–Lovelace Brain Mapping Center at UCLA, appears in the June edition of the peer-reviewed journal Gastroenterology.

The discovery that changing the bacterial environment, or microbiota, in the gut can affect the brain carries significant implications for future research that could point the way toward dietary or drug interventions to improve brain function, the researchers said.

“Many of us have a container of yogurt in our refrigerator that we may eat for enjoyment, for calcium or because we think it might help our health in other ways,” said Dr. Kirsten Tillisch, an associate professor of medicine at UCLA’s David Geffen School of Medicine and lead author of the study. “Our findings indicate that some of the contents of yogurt may actually change the way our brain responds to the environment. When we consider the implications of this work, the old sayings ‘you are what you eat’ and ‘gut feelings’ take on new meaning.”

Researchers have known that the brain sends signals to the gut, which is why stress and other emotions can contribute to gastrointestinal symptoms. This study shows what has been suspected but until now had been proved only in animal studies: that signals travel the opposite way as well.
“Time and time again, we hear from patients that they never felt depressed or anxious until they started experiencing problems with their gut,” Tillisch said. “Our study shows that the gut–brain connection is a two-way street.”
?
The small study involved 36 women between the ages of 18 and 55. Researchers divided the women into three groups: one group ate a specific yogurt containing a mix of several probiotics — bacteria thought to have a positive effect on the intestines — twice a day for four weeks; another group consumed a dairy product that looked and tasted like the yogurt but contained no probiotics; and a third group ate no product at all.
Functional magnetic resonance imaging (fMRI) scans conducted both before and after the four-week study period looked at the women’s brains in a state of rest and in response to an emotion-recognition task in which they viewed a series of pictures of people with angry or frightened faces and matched them to other faces showing the same emotions. This task, designed to measure the engagement of affective and cognitive brain regions in response to a visual stimulus, was chosen because previous research in animals had linked changes in gut flora to changes in affective behaviors.

The researchers found that, compared with the women who didn’t consume the probiotic yogurt, those who did showed a decrease in activity in both the insula — which processes and integrates internal body sensations, like those form the gut — and the somatosensory cortex during the emotional reactivity task.

Further, in response to the task, these women had a decrease in the engagement of a widespread network in the brain that includes emotion-, cognition- and sensory-related areas. The women in the other two groups showed a stable or increased activity in this network.
During the resting brain scan, the women consuming probiotics showed greater connectivity between a key brainstem region known as the periaqueductal grey and cognition-associated areas of the prefrontal cortex. The women who ate no product at all, on the other hand, showed greater connectivity of the periaqueductal grey to emotion- and sensation-related regions, while the group consuming the non-probiotic dairy product showed results in between.
The researchers were surprised to find that the brain effects could be seen in many areas, including those involved in sensory processing and not merely those associated with emotion, Tillisch said.

The knowledge that signals are sent from the intestine to the brain and that they can be modulated by a dietary change is likely to lead to an expansion of research aimed at finding new strategies to prevent or treat digestive, mental and neurological disorders, said Dr. Emeran Mayer, a professor of medicine, physiology and psychiatry at the David Geffen School of Medicine at UCLA and the study’s senior author.
“There are studies showing that what we eat can alter the composition and products of the gut flora — in particular, that people with high-vegetable, fiber-based diets have a different composition of their microbiota, or gut environment, than people who eat the more typical

Western diet that is high in fat and carbohydrates,” Mayer said. “Now we know that this has an effect not only on the metabolism but also affects brain function.”
The UCLA researchers are seeking to pinpoint particular chemicals produced by gut bacteria that may be triggering the signals to the brain. They also plan to study whether people with gastrointestinal symptoms such as bloating, abdominal pain and altered bowel movements have improvements in their digestive symptoms which correlate with changes in brain response.

Meanwhile, Mayer notes that other researchers are studying the potential benefits of certain probiotics in yogurts on mood symptoms such as anxiety. He said that other nutritional strategies may also be found to be beneficial.
By demonstrating the brain effects of probiotics, the study also raises the question of whether repeated courses of antibiotics can affect the brain, as some have speculated. Antibiotics are used extensively in neonatal intensive care units and in childhood respiratory tract infections, and such suppression of the normal microbiota may have longterm consequences on brain development.

Finally, as the complexity of the gut flora and its effect on the brain is better understood, researchers may find ways to manipulate the intestinal contents to treat chronic pain conditions or other brain related diseases, including, potentially, Parkinson’s disease, Alzheimer’s disease and autism.

Answers will be easier to come by in the near future as the declining cost of profiling a person’s microbiota renders such tests more routine, Mayer said.
The study was funded by Danone Research. Mayer has served on the company’s scientific advisory board. Three of the study authors (Denis Guyonnet, Sophie Legrain-Raspaud and Beatrice Trotin) are employed by Danone Research and were involved in the planning and execution of the study (providing the products) but had no role in the analysis or interpretation of the results.

: University of California, Los Angeles (UCLA), Health Sciences

depressed woman

People who are depressed after a stroke may have a tripled risk of dying early and four times the risk of death from stroke than people who have not experienced a stroke or depression.

 

“Up to one in three people who have a stroke develop depression,” says study author Amytis Towfighi, assistant professor of neurology at the Keck School of Medicine at the University of Southern California (USC). “This is something family members can help watch for that could potentially save their loved one.”

Similar associations have been found regarding depression and heart attack, but less is known about the association between stroke, depression, and death, says Towfighi.

The research included 10,550 people between the ages of 25 and 74 followed for 21 years. Of those, 73 had a stroke but did not develop depression; 48 had stroke and depression; 8,138 did not have a stroke or depression and 2,291 did not have a stroke but had depression.

After considering factors such as age, gender, race, education, income level, and marital status, the risk of dying from any cause was three times higher in individuals who had stroke and depression compared to those who had not had a stroke and were not depressed.

The risk of dying from stroke was four times higher among those who had a stroke and were depressed compared to people who had not had a stroke and were not depressed.

“Our research highlights the importance of screening for and treating depression in people who have experienced a stroke,” says Towfighi. “Given how common depression is after stroke, and the potential consequences of having depression, looking for signs and symptoms and addressing them may be key.”

The findings will be presented at the American Academy of Neurology’s 65th Annual Meeting in San Diego, March 16 to 23.

USC
 
Creative  Commons badge